skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Snyder, Wendy E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Seagliders ® are buoyancy-driven autonomous underwater vehicles whose sub-surface position estimates are typically derived from velocities inferred using a flight model. We present a method for computing velocities and positions during the different phases typically encountered during a dive-climb profile based on a buoyancy-driven flight model. We compare these predictions to observations gathered from a Seaglider deployment on the acoustic tracking range in Dabob Bay (200 m depth, mean vehicle speeds ~30 cm s -1 ), permitting us to bound the position accuracy estimates and understand sources of various errors. We improve position accuracy estimates during long vehicle accelerations by numerically integrating the flight-model's fundamental momentum-balance equations. Overall, based on an automated estimation of flight-model parameters, we confirm previous work that predicted vehicle velocities in the dominant dive and climb phases are accurate to < 1 cm s -1 , which bounds the accumulated position error in time. However, in this energetic tidal basin, position error also accumulates due to unresolved depth-dependent flow superimposed upon an inferred depth-averaged current. 
    more » « less